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Sterile neutrino overview

Modern searches for ~1 eV scale light sterile neutrinos are motivated by a set of observed anomalies.
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Many of the proposed experiments to test the light sterile neutrino hypothesis do not have sufficient sensitivity to

mal

ce a definitive >50 statement.
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Motivation for the IsoDAR experiment

The IsoDAR (Isotope Decay-A-Rest) experiment, paired with a kiloton detector like KamLAND, will
be able to make a definitive statement about the existence of light sterile neutrinos.
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» Rule out 341 global allowed region:
e 200 in 5 years
* 50 in 4 months

» The high statistics allow us to distinguish between
a 3+1 and 3+2 sterile neutrino model.

» Collect the worlds largest sample of a low energy
Ve-electron elastic scattering events.

» Beyond this, we also make innovations in:
* Jon source development
e Beam transport and injection
e High current cyclotrons
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Motivation for the IsoDAR experiment

High Statistics: I SOD AR @ KamL AND Event reconstruction

- 8.2 x10° IBD events in 5 years (KamLAND):
- 2600 ¥, -electron ES events - Vertex: ~5cm @ 6.4MeV
- Energy: ~3% (@ 6.4MeV

- 92% detection efficiency for

IBD events

Low backgrounds:

- 2700 m.w.e overburden

- Ve energy above radiogenic(>3MeV)
- IBD (Ve+p — e +n)

Well understood flux:
- SLi B decay-at-rest source
- Cross-section uncertainty 0.2%

[soDAR will search for sterile neutrinos by accurately mapping out the short baseline oscillations through a single

detector, over an L/E of 0.6 to 7 m/MeV.

(3+1) Model with Am? = 1.0 eV? and sin*26=0.1 (3+2) with Kopp/Maltoni/Schwetz Parameters
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Motivation for the IsoDAR experiment
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Operation principles of IsoDAR

ve Detection via IBD

1. Produce 20-50 mA of H>* and inject a into a cyclotron
2. Accelerate 5 mA of Hy* to 60 MeV/amu

3. Impinge on a ’Be target. 'Li+n — %Li — %Be + ™ + V.

4. Map out oscillation in anti-electron neutrino disappearance within a kiloton scale detector like KamLAND

Spencer N. Axani U 6



H;" production: our new multi-cusp ion source, MIST-1

Key design choices:

% . . . . +
» Short plasma chamber® (primary innovation in H;* sources) Bsdsacting

» Modular design System SmCo Magnets

» Extraction plate cooling |
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The Multicusp Ion Source at MIT
Spencer N. Axani U 7



Q1 2016 Q22016 Q32016 Q42016 Q12017 Q22017

NSF funding

Design + simulation

Construction

Comissioning

Optimization

First beam!

» The development of a new multi-cusp ion source, MIST-1,
was funded in 2016 by NSF.

» Commissioning recently concluded and first beam was
achieved in early 2017.

» MIST-1 optimization currently in-progress and we expect to
have results soon.
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Pre-acceleration: RFQ) injection into the cyclotron

Radio-Frequency Quadrupole (RFQ)

A single ¢

evice t

and bunc

hat is able to both efficiently accelerate

1 a hig

h-current beam.

» oreat for accelerating low-energy ions

» very small emittance growth

» accelerates and focuses with a single field

P separates our ion species

Modern technology, and becoming pervasive in

intensity frontier complexes like Fermilab.

As of yet, using an RFQ) as a buncher for axial injection

into cyclotron has not been realized.

To cyclotron
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https://ionlinacs.com/Gallery.html

Pre-acceleration: RFQ) injection into the cyclotron

» NSF funding for RFQ and 1

MeV test cyclotron.
SUICIRNIENWE ) Collaborative development with:

- Istituto Nazionale
di Fisica Nucleare
Laboratori Nazionali di Legnaro

VECC Kolkata
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H;* Accelerator design

INFN-Catania Energy at extraction 60 MeV/amu
Injected energy 35 keV/amu
Radius at extraction 1.99 m
[ron weight 450 tons
Harmonic 4th
Requirements:

» A compact accelerator that can fit into the
Kamioka observatory. Mine entrance size
restriction and weight limits.

» Extract 10 mA @ 60 MeV protons

Innovations:
» Usage of Hy™:
e decrease the space charge effects
* ] protons per ion
* climinates the problem of Lorentz
stripping
» Inject highly bunched beam from an intense
10N source.
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Ve production:

the target design
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aceable ?Be target. Counter-flow cooling
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» Sleeve: 99.99% pure ‘Li

» Shielding: minimize activation of the mine
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@8 » [soDAR is capable of making a definitive statement about light sterile neutrinos.
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» In just 4 months of running, we can cover the global best fit allowed regions to 50.
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A » Accurately mapping out the oscillation wave will allow us to distinguish between a

— 3+1 and 3+ 2 sterile neutrino model.
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s » The development of IsoDAR innovates on several key technologies:
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Particle trajectory and magnetic field simulation

[ 1] Alisua@ xn|4 onaubey

»40-80 eV electrons were injected
into the multi-cusp field.

»Electrons were found to be
contained primarily in the sub-20
Gauss region (white circle).

» The multi-cusp tield “reflects” the
mobile charged particles back into
the center of the ion source.
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Innovations: MIST-v1

Ehlers and Leung’s LBL Source

10 column of SmCo magnets
10 cm radius by 9 cm length

Axial plasma volume length: 2.0, 4.5 cm

Not water cooled.
Back plate biasing (observed a 30% increase in extracted current)

Magnetic configuration: plasma chamber/back plate

MIST-v1

12 columns of SmCo magnets
7.5 cm radius by 7 cm length

Axial plasma volume length: 1.5 - 5.0 cm

Front plate and plasma chamber is water cooled
Back plate biasing and plasma chamber biasing

Magnetic configuration: plasma chamber/back plate/front plate
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[soDAR’s interest in RFQs

Why an RFQ?

Separate

v

Early and efficient
separation of p*
and H,"

)

No need for
additional dipole
magnet

Compact for Underground Improved H,* Current

Spencer N. Axani U 17



[soDAR'’s interest in REQs

10

» The design now needs to be optimized. |
8

» We can see that at the exit of the RFQ), the
beam is highly divergent.

» 15 cm from the exit, the 10 mA beam has

I-rms Beam Radii (mm)

Iy L-rms |
increased from 3mm to 8 mm, nearing the — 1y lmmsl )
C : : : | e I, l-rms |

limitations of our spiral inflector entrance | B |
. - Z _
aperture. kD> EE T U

Focusing
Element
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[soDAR'’s interest in REQs
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The phase spread of each
particle. 60% of the particles are
contained within +/- 10 degrees
of the synchronous phase
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Backup

The beam at the exit of the

RFQ is fairly round.
Roughly 3 mm in radius.

Energy distribution centered

around the design energy (80
keV). 60% contained within
+/-2 keV

Vertical phase space. We see it is
converging.
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Target design and cooling
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Beam: 600kW

NSF proposal to make a beryllium prototype target
+ simulation + CFD
Test cooling design.
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[Location in the mine

Front-end MEBT
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